sgkit.pairwise_distance#
- sgkit.pairwise_distance(x, metric='euclidean', split_every=None, device='cpu')#
Calculates the pairwise distance between all pairs of row vectors in the given two dimensional array x.
To illustrate the algorithm consider the following (4, 5) two dimensional array:
[e.00, e.01, e.02, e.03, e.04] [e.10, e.11, e.12, e.13, e.14] [e.20, e.21, e.22, e.23, e.24] [e.30, e.31, e.32, e.33, e.34]
The rows of the above matrix are the set of vectors. Now let’s label all the vectors as v0, v1, v2, v3.
The result will be a two dimensional symmetric matrix which will contain the distance between all pairs. Since there are 4 vectors, calculating the distance between each vector and every other vector, will result in 16 distances and the resultant array will be of size (4, 4) as follows:
[v0.v0, v0.v1, v0.v2, v0.v3] [v1.v0, v1.v1, v1.v2, v1.v3] [v2.v0, v2.v1, v2.v2, v2.v3] [v3.v0, v3.v1, v3.v2, v3.v3]
The (i, j) position in the resulting array (matrix) denotes the distance between vi and vj vectors.
Negative and nan values are considered as missing values. They are ignored for all distance metric calculations.
- Parameters:
- x
ndarray
|Array
Union
[ndarray
,Array
] [array-like, shape: (M, N)] An array like two dimensional matrix. The rows are the vectors used for comparison, i.e. for pairwise distance.
- metric {‘euclidean’, ‘correlation’}
Literal
['euclidean'
,'correlation'
] (default:'euclidean'
) The distance metric to use. The distance function can be ‘euclidean’ or ‘correlation’.
- split_every
int
|None
Optional
[int
] (default:None
) Determines the depth of the recursive aggregation in the reduction step. This argument is directly passed to the call to``dask.reduction`` function in the reduce step of the map reduce.
Omit to let dask heuristically decide a good default. A default can also be set globally with the split_every key in dask.config.
- device {‘cpu’, ‘gpu’}
Literal
['cpu'
,'gpu'
] (default:'cpu'
) The architecture to run the calculation on, either of “cpu” or “gpu”
- x
- Return type:
- Returns:
:
[array-like, shape: (M, M)] A two dimensional distance matrix, which will be symmetric. The dimension will be (M, M). The (i, j) position in the resulting array (matrix) denotes the distance between ith and jth row vectors in the input array.
Examples
>>> from sgkit.distance.api import pairwise_distance >>> import dask.array as da >>> x = da.array([[6, 4, 1,], [4, 5, 2], [9, 7, 3]]).rechunk(2, 2) >>> pairwise_distance(x, metric='euclidean').compute() array([[0. , 2.44948974, 4.69041576], [2.44948974, 0. , 5.47722558], [4.69041576, 5.47722558, 0. ]])
>>> import numpy as np >>> x = np.array([[6, 4, 1,], [4, 5, 2], [9, 7, 3]]) >>> pairwise_distance(x, metric='euclidean').compute() array([[0. , 2.44948974, 4.69041576], [2.44948974, 0. , 5.47722558], [4.69041576, 5.47722558, 0. ]])
>>> x = np.array([[6, 4, 1,], [4, 5, 2], [9, 7, 3]]) >>> pairwise_distance(x, metric='correlation').compute() array([[-4.44089210e-16, 2.62956526e-01, 2.82353505e-03], [ 2.62956526e-01, 0.00000000e+00, 2.14285714e-01], [ 2.82353505e-03, 2.14285714e-01, 0.00000000e+00]])